Extensions 1→N→G→Q→1 with N=C3 and Q=C23×C3⋊S3

Direct product G=N×Q with N=C3 and Q=C23×C3⋊S3
dρLabelID
C3⋊S3×C22×C6144C3:S3xC2^2xC6432,773

Semidirect products G=N:Q with N=C3 and Q=C23×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C31(C23×C3⋊S3) = C22×S3×C3⋊S3φ: C23×C3⋊S3/C22×C3⋊S3C2 ⊆ Aut C372C3:1(C2^3xC3:S3)432,768
C32(C23×C3⋊S3) = C23×C33⋊C2φ: C23×C3⋊S3/C2×C62C2 ⊆ Aut C3216C3:2(C2^3xC3:S3)432,774

Non-split extensions G=N.Q with N=C3 and Q=C23×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C3.(C23×C3⋊S3) = C23×C9⋊S3φ: C23×C3⋊S3/C2×C62C2 ⊆ Aut C3216C3.(C2^3xC3:S3)432,560
C3.2(C23×C3⋊S3) = C23×He3⋊C2central stem extension (φ=1)72C3.2(C2^3xC3:S3)432,561

׿
×
𝔽